916 research outputs found

    Diagonalization of multicomponent wave equations with a Born-Oppenheimer example

    Get PDF
    A general method to decouple multicomponent linear wave equations is presented. First, the Weyl calculus is used to transform operator relations into relations between c-number valued matrices. Then it is shown that the symbol representing the wave operator can be diagonalized systematically up to arbitrary order in an appropriate expansion parameter. After transforming the symbols back to operators, the original problem is reduced to solving a set of linear uncoupled scalar wave equations. The procedure is exemplified for a particle with a Born-Oppenheimer-type Hamiltonian valid through second order in h. The resulting effective scalar Hamiltonians are seen to contain an additional velocity-dependent potential. This contribution has not been reported in recent studies investigating the adiabatic motion of a neutral particle moving in an inhomogeneous magnetic field. Finally, the relation of the general method to standard quantum-mechanical perturbation theory is discussed

    Semiclassical Time Evolution and Trace Formula for Relativistic Spin-1/2 Particles

    Full text link
    We investigate the Dirac equation in the semiclassical limit \hbar --> 0. A semiclassical propagator and a trace formula are derived and are shown to be determined by the classical orbits of a relativistic point particle. In addition, two phase factors enter, one of which can be calculated from the Thomas precession of a classical spin transported along the particle orbits. For the second factor we provide an interpretation in terms of dynamical and geometric phases.Comment: 8 pages, no figure

    Inelastic semiclassical Coulomb scattering

    Get PDF
    We present a semiclassical S-matrix study of inelastic collinear electron-hydrogen scattering. A simple way to extract all necessary information from the deflection function alone without having to compute the stability matrix is described. This includes the determination of the relevant Maslov indices. Results of singlet and triplet cross sections for excitation and ionization are reported. The different levels of approximation -- classical, semiclassical, and uniform semiclassical -- are compared among each other and to the full quantum result.Comment: 9 figure

    Building Bridges with Boats: Preserving Community History through Intra- and Inter-Institutional Collaboration

    Get PDF
    This chapter discusses Launching through the Surf: The Dory Fleet of Pacific City, a project which documents the historical and contemporary role of dory fishers in the life of the coastal village of Pacific City, Oregon, U.S. Linfield College’s Department of Theatre and Communication Arts, its Jereld R. Nicholson Library, the Pacific City Arts Association, the Pacific City Dorymen\u27s Association, and the Linfield Center for the Northwest joined forces to engage in a collaborative college and community venture to preserve this important facet of Oregon’s history. Using ethnography as a theoretical grounding and oral history as a method, the project utilized artifacts from the dory fleet to augment interview data, and faculty/student teams created a searchable digital archive available via open access. The chapter draws on the authors’ experiences to identify a philosophy of strategic collaboration. Topics include project development and management, assessment, and the role of serendipity. In an era of value-added services where libraries need to continue to prove their worth, partnering with internal and external entities to create content is one way for academic libraries to remain relevant to agencies that do not have direct connections to higher education. This project not only developed a positive “town and gown” relationship with a regional community, it also benefited partner organizations as they sought to fulfill their missions. The project also serves as a potential model for intra- and inter-agency collaboration for all types of libraries

    Criterion for polynomial solutions to a class of linear differential equation of second order

    Full text link
    We consider the differential equations y''=\lambda_0(x)y'+s_0(x)y, where \lambda_0(x), s_0(x) are C^{\infty}-functions. We prove (i) if the differential equation, has a polynomial solution of degree n >0, then \delta_n=\lambda_n s_{n-1}-\lambda_{n-1}s_n=0, where \lambda_{n}= \lambda_{n-1}^\prime+s_{n-1}+\lambda_0\lambda_{n-1}\hbox{and}\quad s_{n}=s_{n-1}^\prime+s_0\lambda_{k-1},\quad n=1,2,.... Conversely (ii) if \lambda_n\lambda_{n-1}\ne 0 and \delta_n=0, then the differential equation has a polynomial solution of degree at most n. We show that the classical differential equations of Laguerre, Hermite, Legendre, Jacobi, Chebyshev (first and second kind), Gegenbauer, and the Hypergeometric type, etc, obey this criterion. Further, we find the polynomial solutions for the generalized Hermite, Laguerre, Legendre and Chebyshev differential equations.Comment: 12 page

    Atomic micromotion and geometric forces in a triaxial magnetic trap

    Get PDF
    Non-adiabatic motion of Bose-Einstein condensates of rubidium atoms arising from the dynamical nature of a time-orbiting-potential (TOP) trap was observed experimentally. The orbital micromotion of the condensate in velocity space at the frequency of the rotating bias field of the TOP was detected by a time-of-flight method. A dependence of the equilibrium position of the atoms on the sense of rotation of the bias field was observed. We have compared our experimental findings with numerical simulations. The nonadiabatic following of the atomic spin in the trap rotating magnetic field produces geometric forces acting on the trapped atoms.Comment: 4 pages, 4 figure

    Moyal star product approach to the Bohr-Sommerfeld approximation

    Full text link
    The Bohr-Sommerfeld approximation to the eigenvalues of a one-dimensional quantum Hamiltonian is derived through order â„Ź2\hbar^2 (i.e., including the first correction term beyond the usual result) by means of the Moyal star product. The Hamiltonian need only have a Weyl transform (or symbol) that is a power series in â„Ź\hbar, starting with â„Ź0\hbar^0, with a generic fixed point in phase space. The Hamiltonian is not restricted to the kinetic-plus-potential form. The method involves transforming the Hamiltonian to a normal form, in which it becomes a function of the harmonic oscillator Hamiltonian. Diagrammatic and other techniques with potential applications to other normal form problems are presented for manipulating higher order terms in the Moyal series.Comment: 27 pages, no figure

    Semiclassical analysis of Wigner 3j3j-symbol

    Get PDF
    We analyze the asymptotics of the Wigner 3j3j-symbol as a matrix element connecting eigenfunctions of a pair of integrable systems, obtained by lifting the problem of the addition of angular momenta into the space of Schwinger's oscillators. A novel element is the appearance of compact Lagrangian manifolds that are not tori, due to the fact that the observables defining the quantum states are noncommuting. These manifolds can be quantized by generalized Bohr-Sommerfeld rules and yield all the correct quantum numbers. The geometry of the classical angular momentum vectors emerges in a clear manner. Efficient methods for computing amplitude determinants in terms of Poisson brackets are developed and illustrated.Comment: 7 figure file
    • …
    corecore